ORACLE
JD Edwards
EnterpriseOne

Integrated Chatbot
User Experience for

the JD Edwards
Administration

WHITE PAPER
SEPTEMBER 13, 2018

ORACLE

DISCLAIMER

The following is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making purchasing decisions. The
development, release, and timing of any features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.

2 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

Table of Contents

OVERVIEW

Create Your Own Intelligent Bot

3

[0] [=T o RO

PUIDOSE ...ttt e e e s e e st s e s e eeeennnenees

USE CaS . ittt e ee ettt e e e e e e e et e e e e e e e et e e e e e e e e aaaes

The IJDE SOIULION......ccoiiiiiiiiieeeceeee

Demo Script/INteractionooouuueiiiiiieiieie e

[2T=T 0[] 1] E TR

Minimum Technical REQUIrEMENTSccocvviiiieeeiiiiiiiiee e

What Are Intelligent BOIS?ueiiiiiaeiiieiiee e

Overview of Bot DeVelopmMEentueiiiiieeiiiieiee e

Create @ BOT ..o

Create BOT ..o e e e e e e e

Create INTENTS ... e e

Create ENILIES ...t e e e e e e eeaaa

A ENBILIES coeiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeseeeeeeesssssssessssssssssssssrsrsresersraree

Train the Bot.......ooooiiiiiieeeee

Which Training Model t0 USE?........ccooiiiiiiiiiiii e

WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

....................................... 8

...................................... 11

(DT oo I (o PSR T 12

JLICES] 1] o P PP 14
CUSTOM COMPONENTt e e e e e enn e 15
How Do Custom ComMPONENtS WOIK?eeieiieee ettt e e et e e e e e e aeeeas 15
THEe COMPONENT SEIVICE eiieeiee ettt ettt e e e e e ettt e e e e e e st e et eaeeeasntbeeeeaaeasaansnnneeeaaean 15
TRE SNEIL ... e e e e 15
TR REGISIIY eeiiie ettt e e ettt e e e e e et e e e e e e e e sstbaeteaeeeasntbaeeeeaeeesantbnaeeaaeeean 15
COMPONENE MOAUIES ...ttt oottt e e e e e e ettt e e e e e e e nntbeeeaaeeeaannsbeeeaaaeaeanees 16
LI AL L PP PUT SRR 16
THE MESSAGE MOUENeeiiiiiiiiee e e e e e e e s st e e e e e e s eantbaaaeeaee s 16
Accessing the INtelligent BOtS SDKccuuiiiiiie it e e e s e e e e s e anaraee s 16
Creating the Component SErvice iN AMECEeiii it a e e 17
Associating APIS With @ BACKENToiiiiiiii i e e 24
Adding Custom Component in BOT BUIIAEccuviiiiieiiiiiiiiee e 26
Adding Custom Component to the Dialog FIOW............cooiiiiiiiiiiiiiic e 27
Settings (Configure ChANNEIS)...........ueiiiiiee et e e e e e et e e e e e e e anees 30
Embedding a Chat Bot in a JD Edwards E1Page........ccccccoeeeviviiiieiiennnnnnnn. 32
[=TH=To U1 (- T SO ERPRR 32
Y (= 1 32
Uploading Chat Bot @S @n EL Pageccoiiiiiiiiiei ettt a e 40

4

WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

5 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

OVERVIEW

Project

This case study highlights a possible JD Edwards feature regarding chatbots that would be built around the JDE administration. JD
Edwards Development JDE-Labs is currently researching the use of chatbots within EnterpriseOne. This functionality is not
generally available.

Purpose

To introduce basic concepts of chatbots and give hands-on experience of how to build an intelligent bot that is embedded within JD
Edwards, enabling stakeholders to utilize the same to build their own bots for JD Edwards.

Use Case

There are certain actions JDE admins perform often. Sometimes these actions involve updates to multiple applications to complete
the workflow. Creating users is one such use case which involves the following steps:

Add user record in Address Book.
Create a user profile.

Set up a role.

Assign environments to role.
Assign role to user.

Set up security for user.

oupwbhE

Using the Oracle Intelligent BOT service and orchestrations, this action can be performed quickly using chat conversations. A
similar model, the integrated modern chatbot interface technology, can be applied to several business process within JD Edwards.
There are several repetitive steps, prone to manual user errors. In these cases, the chatbot interface could open a multi-step
process using a progressive conversational interaction. Here, the user focuses only on inputs and the system executes the
repetitive steps on the backend.

The JDE Solution

At a high level, the solution includes:

1. Chatbot interface for user interaction and experience, using the Intelligent Bots feature of the Autonomous Mobile Cloud
Enterprise (AMCe).

2. JD Edwards Orchestrations to automate repetitive tasks.

Demo Script/Interaction
This is an example of a conversation using a chatbot (Edward) to automate the user creation process:

Admin: Create user John

Edward: What is the address book number? (Format: AB# 1234)

Admin: AB# 1007

Edward: What is the alpha name? (Format: Financial Distribution Company)
Admin: ‘John D’

{After few seconds}

6 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

Edward: User creation successful

Benefits
Quicker turnaround time for business process completion.

Improved productivity and reduced error rates. The system performs the repetitive tasks, allowing the user to focus on exceptions
and complex business conditions.

Minimum Technical Requirements
e Autonomous Mobile Cloud Enterprise (AMCe) instance — This is where we build the BOT and custom component.

e Node JS — To install all the required modules for the package.

7 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

CREATE YOUR OWN INTELLIGENT BOT

What Are Intelligent Bots?

A bot is a virtual personal assistant that completes a task through a combination of text messages and simple Ul elements like
select lists. While a bot can open your enterprise to messaging, it is not a replacement for a mobile or web app. It instead provides
a new channel.

Overview of Bot Development

-

r .-\. F .-\._ r i _./. --".l _.-'. .-"._ I."'. Y h"\-__
Create | Train the Create Integrale Creale Test the Configure
Interts ~ Bot Entities . Cusiom > Dialog Bot Channels
Create a BOT
I

1. Open your Autonomous Mobile Cloud Enterprise (AMCe) instance and click ==== to open the side menu.

= ORACLE putonomous Mobile Cloud Enterprise

Development Instance Detais ADT Rafarence v =

Connectors

Design and implement & simple APl

Notification Profiles

2. Select Development > Bots to open the Bot Builder, which you can use to create your own bot.

8 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

o o — o T . - - U

Generic bot description

Create BOT

To create a new bot, click the New Bot button. Next, we need to introduce some basic information, such as the name of the chat
and a brief description. In this particular case, we will create a very simple bot for a JDE admin. The bot will provide the JDE admin
with the ability to create users with commands.

ORALCLE Mobile Cloud Enterprise

Create Intents

The first option is called Intents, which are categories of actions or tasks you expect your bot to perform. Here, we will record some
guestions/utterances about the topic so the chatbot can acquire the information it needs to fulfil the requirement. Click on
the Intent button to create your first intent, and name it Create User.

Now we can create different utterances or statements to help the bot understand what the user needs. We shall add three
utterances for our use case:

» create user JDE with AB# 1003
» Ccreate new user
» create user

9 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

+ Intent More * 4 Description

Ha

° Q

Create User
Sort By MNams v
i Description
== Create User X
a
Examples @
f=
= a
a create new user
create user
ertite user john wiith 368 1234

Create Entities

Entities are variables that identify key pieces of information from the user input that enable the bot to fulfill a task. Go to the Entities
tab and create the following entities that are required to create a user:

ENTITY NAME TYPE VALUE

UserNameRegEx Regular Expression [a-zA-Z][a-zA-Z0-9K2,7}
UserName Derived UserNameRegEXx
AddressNumber Regular Expression [aA][Bb]# [0-9]{1,6}
AlphaName Regular Expression L

Q —+ Entity More ~ 4 Description
Filter Q Name *
® UserName

Sort By Type Ascending -
= Description
= Userhame X
ra AddressNumber X
AlphaName =
)
UserNameRegEx * Configuration
— Type @
L= ADDRESS e
Derived v
CURRENCY
m Parent
PATE UserMamsRegEx -
u DURATION .
Rule
EMAIL Freceding Phrase -
NUMEBER Phrases

create user % | Create User X Create user >
PHONE_NUMBER

SET

10 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

Add Entities

Add the above created entities to the Create User intent you previously created.

Intent Entities

AddressNumber *
AlphaMName >
UserMName x

Ascending

Train the Bot

To enable your bot to reference intents when it parses the user input, you need to train it. Specifically, you need to train it with the
intents and their utterances (collectively, the training data), so that it can resolve the user input to one of the intents. Click Train,
choose a model and then click Submit.

Note: You must have minimum of two intents to train the bot and each intent should have at least 3 utterances. You can create a
dummy intent to meet this requirement if needed.

Walidate O Tan ¥

@ Trainer Ht

A fast-training, linguistics-based model, !

[

O Trainer Tm

A machine learning-based model,

Which Training Model to Use?

Create the initial training corpus.

Train with Trainer Ht. You should start with Trainer Ht because it doesn’t require a large set of utterances. As long as there are enough
utterances to disambiguate the intents, your bot will be able to resolve user input.

Refine your corpus, and retrain with Trainer Ht. Repeat as necessary. Training is an iterative process.
Train with Trainer Tm. Use this trainer when you've accumulated a robust set of intents.

11 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

Dialog Flow

Next, you need to give the bot the ability to express its intelligence to its users by creating the dialog flow. The dialog flow
describes how your bot reacts, as different intents are resolved. It defines what your bot says to its users, how it prompts them for
input, and how it returns data. Think of the dialog flow as a flow chart that's been transposed to a simple markdown language. In
Intelligent Bots, this markdown language is a version of YAML called BotML.

By default, the following template will be available:

1 Hmetadata: Information about the Tlow
1% platforsVersion: the version of the bots platforn that this flow was written to work with
3 metadata:
4 platforaVersion: 1.8
5 main: true
& name: Fresh_Bot
7 #context: Define the varisbles which will used throughout the dialog flow here.
5 context:

3 varibles:

"variableType".
ype" can be defined as a prinitive type (“int", "string”, “boolean"), "list", or an entity name. A variable can also hold the results returned by the Intent Engine. For these variables, the
t be "nlpresult™ (for example, iResult: “nlpresult™).
grecting: "string”
name: “string”
#states is where you can define the various states within your flow.
The syntax for defining a state is
& statename:
17 # component:Specify the component you want to use. This can be either a Built-In or custom component.
properties:
propertyl: "value" (These are the properties to the specified component
transitions: You can specify one of the following four
next: Specify the state you want to execute next after this state. By default it will execute the state specified after this
error: Specify the state you want to execute in case the component encounters any error in execution.
actions: You can handle various actions returned by the compoments here the syntax is actionName: "statename”
actionl: statel
return: “done” You can exit the flow using the return statement

£
£
£
£
£
£
£
£

17 states:

23 askGresting:

e component: "S_',r;ten.List‘|

9 properties:

1 options: "Hello!, Ola!, Vannzkem!, Hamaste!"
k7l prompt: "Hi there! What would you Like me to echo back?”
3 variskle: “grecting”

4 askllame:

5 component: "System.Text™

& properties:

7 prompt: "what iz your name"

3 variable: "name”

3 start:

49 component: "System.Output”

11 properties:

2 tet: "${gresting.value} ${namz.value}"
4 transitions:
4“4 return: “done”

Clear the existing content and paste the content inside the box below: (Note: Indentation should be strictly followed)
metadata:
platformvVersion: "1.0"
main: true
name: "JDEBotMainFlow"
context:
variables:

iResult: "nlpresult”

12 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

states:
intent:
component: "'System.Intent"
properties:
variable: "iResult"
confidenceThreshold: 0.5
transitions:
actions:
Create User: 'createuserflow"
unresolvedIntent: "unresolved"
createuserflow:
component: ''System.Output"
properties:
text: "Sorry I am not yet programmed to create user™
transitions:
return: ‘‘createuserflow”
unresolved:
component: "'System.Output"
properties:
text: "Sorry | don"t understand that question!"
transitions:
return: "unresolved”
Now let's describe some of the variables included in the YAML.

The iResult variable will contain information and values generated by the natural language process engine. At the same time, it
helps to determine the intents that trigger the execution of the Flow. This variable takes its value from System.Intent, which
represents engine instance and the algorithm.

The confidenceThreshold variable is very important since it defines the precision value that the engine will use in order to
determine what is going to be executed once the Intent has been evaluated. The engine and the algorithm will evaluate each user
Intent and assign each a score; the score that is higher than the confidenceThreshold will be executed. Increasing or decreasing
this value will impact the accuracy with which the bot can resolve the input from the user.

To validate the BotML, click on the Validate button in the upper right section of the Flow screen. You should see a confirmation
message.

13 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

If there are two or more intents then we need to train the bot. To do that we need to click the Train button (upper right) so the bot
can be trained with the Intents, Entities and Flow. Once we click Train we are ready to test the bot. In our case, as we have only
one intent we can skip training the bot.

Testing

Click the Play button, located in the upper right part of the screen. Enter Create user. The system returns the message “Sorry | am
not yet programmed to create user”. You get this message because the dialog flow is programmed to respond with this message
for the create user intent.

=

Valdate

14 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

CUSTOM COMPONENT

How Do Custom Components Work?

Your bot uses custom components when it needs to return data, execute business logic, or render channel-specific Ul components
like the carousel in Facebook Messenger.

Like the built-in components, the custom components are re-usable units of work that you define within each state node of your
dialog flow. Unlike the built-in components, custom components perform actions that are specific to your bot. They execute
functions that the system components can't.

Custom components don't reside within Intelligent Bots. Their functionality is provided through backend services that are accessed
through calls made to, and returned from, a REST service called the Component Service. As the Dialog Engine enters a state in
the dialog flow, it assesses the component. When it encounters one of the built-in components (noted by System.), it executes one
of the generic tasks described in Built-In Components: Properties, Transitions, and Usage. When the Dialog Engine discovers a
custom component, however, it calls the Component Service, which hosts one or more custom components.

The Component Service first finds and then invokes the custom component on behalf of the Dialog Engine. When a custom
component is invoked, it can pass input parameters to a backend service and return the result. The Dialog Engine then resumes,
moving on to the next sate in the dialog flow, or to the state dictated by the action described in the returned JSON payload.

The Component Service

The Component Service is hosted in its own Node container. As pictured here, the Node container can be part of AMCe, but it can
be part of any other REST infrastructure as well.

Bots Node Container
(AMCe)

Dialog Engine Ptﬁtfrmnm;mqfrnwm!.."? =W T el *mm
l » Component Service] "‘H_Q]
| -« e - components.
Component GETfeampanents o ‘T
Metadata < GET e

The Shell

The Shell routes the GET and POST requests. It produces a list of components in response to the GET call made by Intelligent
Bots when you register a Component Service. The Shell also invokes the component using the component name that's appended
to the POST call (POST uri/components/{ComponentName}). To respond to these requests, the Shell component references a file
in the Registry component that maps the component names to their corresponding JavaScript implementation files.

The Registry

15 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

https://docs.oracle.com/en/cloud/paas/mobile-autonomous-cloud/use-chatbot/reference1.html#GUID-121A9B9F-6196-4DDE-A930-D7A2E2F3F2D9

The Registry component maps each component to its implementation. Within the Registry.js file, a JISON object definition surfaces
the components to the Shell. Each component is described by a name-value pair in which the name is the name of the component
(like ‘Balance Retrieval’ in the following import statement) and the value is a return function with a reference to the JavaScript
module location relative to the Registry.js file (./). In this snippet, the two components, CreateUser and TrackSpending, are custom
components, each of which map to a separate JavaScript module. The require function includes these separate modules in the
Registry.js file.

“use strict";

module.exports = {

"jde_.CreateUser: require("./jde/create_user’),
"TrackSpending®: require("./banking/track_spending™)

}

Component Modules
Each component is written as JavaScript module. The functions and business logic to be executed are written here.

The SDK

You can leverage the SDK, whose helper methods enable the components to access the context of a bot’s request messages,
which can be comprised of elements that describe the variable values, the language processing results, the extracted entities, and
any input parameters that have been defined for the component. The SDK also enables the components to return a response to
the bot.

The Message Model
The Message Model is a utility class that creates and validates the message structure.

An instance of this class is instantiated with the payload that represents the message so that the message can be parsed and
validated.

Accessing the Intelligent Bots SDK

To create you custom APl you must first get the bot SDK. You can get the Intelligent Bots SDK (omce-bots-sdk-
<version_number>.zip) from the Oracle Technology Network’s Oracle Autonomous Mobile Cloud Enterprise download page. You
can also access this page by clicking Downloads in the left navigation bar.

Development = ORACLE' Autonomous Mobile Cloud Enterprise

Home What's the buzz?

Want to learn more?

Settings L —
—— bt Create Moblle Apps - Fazt!
i Downloads...
Watch and leam how Autonomous Mol
Enterprise helps you sketch out the AP
& =5 o create 3 backend that contains all the s
your mobile app requires (like notificati
storage, user management, and offline
B - : synchronization), then monitor the heal
backend through real-time diagnostics.

ct-Owl
E:

entation...

321

] Let our Designer Do the Coding For

Take a spin through Mobile Application

rceleratnr IMAYY and sas how eacy it |

16 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

http://www.oracle.com/technetwork/topics/cloud/downloads/amce-downloads-4478270.html

What's New || Downloads | Ariches & Whitopapets || Community | Leam Mare

Oracle Autonomous Mobile Cloud Enterprise Downloads

This pagy all tha for Cracle Auto

Mobie Cloud Enterprise (AMCa)

4 OTN License Agresmant

You must accept the OTN License Agresment to downlaad this software
Accopt Liconse Agrosment | ' Docling Licenss Agresment

4 BOTS CUSTOM COMPONENT SDKS

Module Download What's New
Bots Samplas 4 amgeots-sampies-v182.3 70 * Suppart for Convarsation Message Model [CMM), 3
viB230 wishicla for anriching bot masEages 5o that they ean

o&anms aEplay as bubbies of loops of cards with images
links, and butions.

4 BOTS CLIENT SDKS

After you unzip the file, open the API implementation folder. It contains the following artifacts that you modify to build your service.
It includes JavaScript files for the Shell.

Registry and the SDK (shell.js, registry.js, and sdk.js). It also includes the following:

e mcebots.js: Contains the generic component logic. You copy and paste this into your own component service.
e package.json: Contains the node.js module dependencies required for the project's package.json file.
e mcsbots.raml: A template for creating the AMCe custom API.

Name Date modified Type

. node_modules 5/31/2018 3:26 AM File folder

.. pizza 5/24/2018 2:58 AM File folder
2 meebots)s 5/24/2018 1:38 AM JScript Script File
|| mecebots.raml 5/24/2018 1:34 AM RAML File
2| MessageModel js 5/24/2018 2:58 AM JScript Script File
|| package.json 5/24/2018 2:58 AM JSON File
|| package-lock.json 5/24/2018 1:27 AM JSON File
H registry.js 5/24/2018 2:58 AM JScript Script File
sdk.js 5/24/2018 2:58 AM JScript Script File
2 shells 5/24/2018 2:58 AM JScript Script File
|| swagger.json 5/24/2018 2:57T AM JSON File
|| toolsConfig,json 5/24/2018 2:57T AM JSON File

Creating the Component Service in AMCe

1. Define the GET and POST endpoints. You can define these endpoints on your own, or use the starter RAML template
(mcebots.raml).

a. In AMCe, click ==== to open the side menu and select Development > APlIs.
b. Click New API. Enter the API name (jde_bot), a description, and a short description.

c. Drag mcebots.raml into the dialog and then click Create. Make sure to rename the API to jde_bot.

17 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

New API X

Either upload a valid RAML document to jumpstart your API creation, or enter the information below to get started.

* API Display Name jde_bof 1.0

* APIName jde_bot
https://8106505852EB4E01 B309089D20233D48.mobile.ocp.oraclecloud.com:443/mobile/custom/jde_bot/

™ Short Description pisplayed in the API Catalog.

100 characters left

OR

Upload a RAML document or drag it here.

Create

2. To enable anonymous access, click Security in the left navigation bar and then switch off Login Required.

[]] a 1

mm General

(i] Login Required controls whether credentials are required to test this API's endpoints. Wher
one of the roles selected here to access the APL When disabled, credentizls are not reguire
the Source view.

¢» Endpoints
Tell me mere about API security

0 Security B

Login Required ||
2o Schema
By omypes
P s
3. Click Save.

4. Download the JavaScript scaffold:

a. Click Implementation in the left navigation bar.

18 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

- +]
#

H

You don't have any API implementations.

b. Choose Download JavaScript Scaffold.
c. Unzip the scaffold file. This file contains the following:

= The component service file: This file, which is named after your API (i.e jde_bot.js), contains the REST endpoints
defined for AMCe custom code APIs.

= package.json: The project configuration file. It includes a list of module dependencies.

-

Mame Type Compressed siz
jde_bot.js JScript Script File

|| jde_bot.raml RAML File

|| package,json JS0OM File

|| ReadMe.md MD File

|| samples.tet Text Docurmnent

|| swagger,json JS0OM File

|| toolsConfig.json JSON File

5. Implement the Custom Component:
a. Within the scaffold file, add the SDK, Registry, MessageModel and Shell modules.

b. Implement the scaffold’s JavaScript to add the custom component logic. To do this, you're going to replace most
of the contents of the component service file (jde_bot.js) with those of the mcebots.js file from the Intelligent Bots
SDK:

i. Open the component service file (jJde_bot.js) in the JavaScript editor of your choice.
ii. Note the service.get function URI. It looks something like /mobile/custom/jde_bot/components.

iii. Delete all of the contents of the file except for the comments at the top of the file.

19 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

iv. Open the mcebots.js file and then copy its contents to the component service file.

v. Replace the value of const apiURL = ‘/mobile/custom/bots/components’; with the value of
the service.get function. For example, const apiURL = ‘/mobile/custom/jde_bot/components’;.

vi. Make sure script Points to the right path of shell.js file.
var shell = require("./shell")();
vii. Save the file.

c. Edit the package.json file in the scaffold file with the Bot SDK dependencies in the package.json file from the
Intelligent Bots SDK:

i. Open the Intelligent Bots SDK’s package.json file in the text editor of your choice and then copy and
paste its dependencies definition to a clipboard:

"dependencies': {
“joi": "nN9.2.0"
T,

ii. Inthe scaffold’s package.json file, paste the definition on its own line, one directly after
the “main™attribute.

6. Create a directory named jde within the scaffold file. Create the custom component module by creating a JavaScript file.
This file includes the metadata and invoke functions.

-~

MName D

[1 jae

. node_modules
(2] jde_botjs

| jde_botraml
MessageModel,js
|| package.json

|| package-lock.json
|| ReadMe.md
registry.js

| samples.bd

sdkjs
2| shell js
|| swagger.json

] | toolsConfig.json

o e s e e e R I R e]

7. Copy the below snippet to new javascript file within jde folder and name it create_user.js. Edit package.json file to add
dependencies for the create_user.js file.

Include in library = Share with = Mew folder
4 |, jde_bot i Mame .
L jde

create_userjs

= 1) node_modules
) jde_botzip

20 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

""use strict”

const axios = require("axios");

module.exports = {

metadata:) => ({

"name': "jde.CreateUser", //component name

"properties': {

"userName': { "type': "string", “required": true },
"addressNumber™: { "type" : "string", "required": true },
“alphaName™: { "type"™ : "string", "required': true }

}.
“"supportedActions™: [
1

b,

invoke: (conversation, done) => {
var userName = conversation.properties().userName;
var addressNumberStr = conversation.properties().addressNumber;
// strip out prefix "AB# "
var addressNumber = addressNumberStr._replace(/AB# /i, "");
var alphaNameStr = conversation.properties().alphaName;
// strip out single quotes
var alphaName = alphaNameStr.replace(/"/g,"");

conversation.logger().info("jde.CreateUser: creating JDE user + userName);
var baseURL = "http://machineip:port/jderest’; //add the url for your rest server
var url = baseURL + "/tokenrequest';

console.log(url);

//add user name and password to your rest server

21 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

axios.post(url, {username: “"username®, password: “pwd"})
-then((response) => {
var jsonData = JSON.stringify(response.data, null, "\t");
var json = JSON.parse(jsonData);
var token = json.userlInfo.token;
//ND_AddUser is the orchestration
var url = baseURL + "/orchestrator/ND_AddUser";

console._log(url);

var params

{3:
0

params.token = token;

var inputs

params.inputs = inputs;

params. inputs.push({"'name": "AddressNumber', "value'": addressNumber});
params. inputs.push({"'name": "AlphaName", *value': alphaName});

params. inputs.push({"name": "SearchType', "value'": "E"});

params. inputs.push({"'name": "BusinessUnit", "value™: "1"});

params. inputs.push({"name": "UserlID", "value': userName});

params.inputs.push({"'name": "Role™"™, "value': "SYSADMIN"});
params. inputs.push({"name': "DataSource', "value': "DEFAULT"});
params. inputs.push({"'name": "SystemUser", *"value': "JDE"});
params. inputs.push({"'name": "Password", "value": "welc2jde"});
console.log(params);
return axios.post(url, params); // using response.data

b

.then((response) => {
console.log("Response®, response);
conversation.reply({ text: "User " + userName + " created successfully"});
conversation.transition();

done();

1))

22 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

.catch(function (error) {
console._log(error);
conversation.reply({ text: "User " + userName + " creation failed"});
conversation.transition();

done();

¥

The above file receives the entity values from the chat conversation and performs AIS calls to the orchestration
ND_ADDUSER (Export file is available in lab_resources folder) with required inputs. The response received is then
modified to user readable form and sent as reply to the conversation flow.

ND_ADDUSER orchestration contains service requests which performs following tasks:

SERVICE REQUESTS INPUTS

Add user record Addressumber. AlphaName, SearchType (E),
BusinessUnit (1)

Create user profile Userld, AddressNumver
Assign role to user UserID, Role (SYSADMIN)
Set up security for user UserID, DataSource (Default), SystemUSer, Password

For more information on orchestrations, please refer to the JD Edwards EnterpriseOne Tools Orchestrator Guide

8. Edit package.json file to add the dependencies for create_user.js.
"dependencies': {

"joi': "n9.2.0",

"body-parser': "~1.15.0",

express': "N .13.4",

"http-auth': "~3.1.3",

"moment': "~2.16.0",

23 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

https://docs.oracle.com/cd/E53430_01/EOTOT/manage_orchestration.htm#EOTOT187

“request': "2.73.0",

“twilio™: "2.11.1",

“jsdoc": ""3.4.3",

“axios': "~0.12.0"
B

9. Edit the registry.js file with the name and location of the component file.

module.exports = {

components: {

// JDEBot

"jde._.CreateUser”: require("./jde/create_user-)

10. Install the node module. Navigate to the scaffold file directory in command line and run NPM install.

11. Package the scaffold file to .zip and upload the node project to AMCe.

-3 indpomts

B e
ia Sthems
= You don't have any API implepnentations.
B e
Download a JavaScript scaffold of your APi to help you get started, or @t upload a project iff
go.
P s .

B cocumenation

implementation

W oy

Uplasd an implementtion archeve of drag it here

Associating APIs with a Backend

You create a backend to serve as a secure gateway between your app and AMCe features, such as BOT and custom APIs. For
your BOT to access these resources, it authenticates with a backend.

|
1. Click === to open the side menu and select Development > Backends.

2. Click New Backend.
3. Once you complete the dialog and the backend is created, keep the Settings page open.

4. The following authentication and connection details are generated when you create a backend and are displayed on the
backend’s Settings page:

24 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

B secuiy

test ekt 2 3 hartend desmntio
X wn

Access Keys @
B sumge

{ imes Ficfresh Aevoke () Agvoke

e 09344 Td8A4b4aRTTe T TOARIRASAST 07T
B nanseations
Show Show

B App Folicies

Bae LAL hitpsy

Qlulf b 44pbboanaZ20 /dd3 a3 wydcom/oauthZivLoken

Obuth Authorze Endpomt ptpesfides-be77b et 8840400502207 0d 2203 identity.orackedoud.comyoauth2 v L authorize

Social Login @

Access Keys

You can use these to control access to the backend. They are unique for each backend.

e OAuth Consumer keys are generated in the form of a client ID and a client secret.

e HTTP Basic Authentication keys are generated for you in the form of a backend ID and an anonymous key.

(We will be using this one for our example.)

Environment URLs

e The Base URL is needed for all API calls. This URL is unique for each instance that you have provisioned.
e The OAuth Token Endpoint is the URL that your app needs to make OAuth token requests.
e The OAuth Authorize Endpoint is the URL that your app can use to get an authorization code to exchange for

an OAuth access token.
5. In the left navigation bar, click APlIs.

[e, Diagnostics

-E} Settings
D Clients
ﬂ Security
You don’t have any API selections.
APL
0 o Add features to your backend by selecting from a catalog of published APIs, or define a new API to quickly test v
implementation before the real one is ready.
] Sterage

Show me how it works

u Notifications
+ Select APIs + Newarl v
¢]

App Policies

6. Click Select API and choose the API created in the previous section (i.e., jde_bot) using the + (Add) icon.

25 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

bots_samples FIFSampleAPT jde_bot test_ap
/ . / Sample API for learnin... / API for JDE / testapi
& o & o

vi823 DRarT | F V10 ar vi823 i vis23 orarT | F

Filter APIs Q | Sortby Name Ascending v

Adding Custom Component in BOT Builder

Navigate back to Development-> BOTS -> your bot (jde_bot) to register the component service with Intelligent Bots so that it can
be discovered by the Dialog Engine.

1. Inthe left navigation bar, click Components ().

2. Click Add Service to open the Create Service dialog.

Create Service

© " Sackumi 10

© * Motadats URL

3. Add the name for the custom component service and an optional description.
4. Choose an authentication option:

Mobile Cloud: For authentication handled by a backend in AMCe.

This is the default setting. To complete the dialog, you need to reference the Settings page for the backend that hosts the API that
implements the Custom Component Service. Authentication and Connection Info in Developing Applications with Oracle
Autonomous Mobile Cloud Enterprise describes this page.

= ORACLE Mobie Chud Sevice. CEVELOPMENT -
Py L DA
o
axh o
e — Access Keys ©
O oo WITR Basic [@] e Amow Ot Consumar [@ v | Aot

Erniroament URLs @

1]

s A Token Erpoit

Seial Login @
Wi | s
b«

Metadata URL: This is custom APl URL, which is displayed in the Overview panel of the API Designer. You should append
/components to the API url,

26 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

" o
B s e

A AL Cataloq Froperties
& Schem

) Tohelp famikarize spplication developers with the publahad AP in the catalog, brisfly descorbe the purpose of the AP1 and assodate an icon weth it The descry
image &e nat aved in the AFT'S gensrated RAML document, and are not displayed in the Saurce view.

..IJ Tipe:
E’. Traits
B ocumetsin
m Implementation

User name and password: If you selected Use anonymous Access, you must provide the Anonymous Key. This value is
generated when you create a backend, and is displayed on the Settings page for the backend that manages your API.

You are now ready to add the custom components to your OBotML definition. You can see your custom components loaded as
shown below:

LJEBU
@ + senvice jde.CreateUser
Q Filter Q0 senvice JDEComponent
JDEComponent 4 Properties

ES | jde.CreateUser Property Type Required
addressNumber string true

Fg |
alphaName string true
userName string true

Supported Actions

@ &

Adding Custom Component to the Dialog Flow

Navigate to Dialog Flow and replace the contents with the yaml code below. Also, replace the highlighted component name with
your component name. Validate the yaml code with the Validate button at the top right. (Note: Indentation should be strictly
followed)

27 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

metadata:
platformVersion: "1.0"
main: true
name: "JDEdwardsBotMainFlow"
context:
variables:
iResult: "nlpresult”
userName: "UserName"
addressNumber: *""AddressNumber*
alphaName: "AlphaName"
txnState: "string"
states:
intent:
component: "'System.Intent"
properties:
variable: "iResult"”
confidenceThreshold: 0.5
transitions:
actions:
Create User: "startCreateUserFlow"
unresolvedIntent: "unresolved"
startCreateUserFlow:
component: "System.SetVariable™
properties:
variable: "userName"
value: "${iResult.value.entityMatches["UserName"][0]}"
transitions: {}
setAddressNumber:

component: "System.SetVariable™

28 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

properties:
variable: "addressNumber"
value: "${iResult.value.entityMatches["AddressNumber*][0]}"
transitions: {}
setAlphaName:
component: "System.SetVariable™
properties:
variable: "alphaName"
value: "${iResult.value.entityMatches["AlphaName"][0]}"
transitions: {}
askUserName:
component: "'System.Text"
properties:
prompt: "What"s the user name?"
variable: "userName"
maxPrompts: 1
transitions:
actions:
cancel: "intent"
askAddressNumber:
component: "System.Text"
properties:
prompt: "What"s the Address Number (format AB# 1234)?"
variable: "addressNumber"
maxPrompts: 1
transitions:
actions:
cancel: "intent"
askAlphaName:

component: "'System.Text"

29 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

properties:
prompt: "What"s the AlphaName (format “Financial Distribution Company®)?"
variable: "alphaName"
maxPrompts: 1
transitions:
actions:
cancel: "intent"
execCreateUser:
component: "jde.CreateUser"
properties:
userName: "${userName.value}"
addressNumber: "${addressNumber.value}"
alphaName: "${alphaName.value}"
transitions:
return: "execCreateUser"
unresolved:
component: ''System.Output'
properties:
text: "Sorry | don"t understand that question!"
transitions:

return: "unresolved"

Settings (Configure Channels)

Bots aren’t apps that you download from an app marketplace. Instead, users access them through messaging platforms or through
client messaging apps. Channels, which are platform-specific configurations, allow this access. A single bot can have several
channels configured so that it can run on different services simultaneously.

Go to the Settings tab and add a new web channel as shown below. This will generate an app Id that can be used to call the BOT
service from web.

30 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

Create Channel

*
Name

Description

@ Channel Type

* Page Access Token

™ App Secret

Session Expiration (minutes)

Channel name

Optional short description for this channel

Facebook Messenger -

Facebook Messenger
Webhook

Web

105

Android
Copy from the Facebook app to here

60 v Default

Channel Enabled /
l. Ganeral Channels Agent Integrations QA Routing Config
-
-
"N Web
Q L system ot fest e
Description Optional short descriptron for this channe!
® e . '
kg
Channel Type Web
‘e
Appld
Appoken Lisddczpvcrnguahyilald
Session Expiration {minutes] 60 v Default

Y ¢

31 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

EMBEDDING A CHAT BOT IN A JD EDWARDS E1PAGE

Prerequisites

1. To get the OMCe client SDK for JavaScript, go to the Oracle Technology Network’s Oracle Mobile Cloud Enterprise Downloads
page and download the following archives:

a. OMCe Bots Client SDK for JavaScript v18.2.3.0
b. OMCe Bots Client samples for JavaScript v18.2.3.0
2. Install Node.js on your machine https://nodejs.org/en/download/.

Steps
Configure the SDK

1. Copy bots-client-sdk-js-18.2.3.0.zip to a Linux machine and extract the zip.
2. Run the configuration script. This script moves the required sdk file to one folder.
[opc@jdelabs bots_sdk_external]$./configure bots-client-sdk-js
Done! Files are available in /mnt/store/bots_sdk_external/bots-client-sdk-js_
3. Zip up the created directory and copy it back to your Windows machine.
mv bots-client-sdk-js_ bots-client-sdk-js
tar -cvzf bots-client-sdk-js.tar.gz bots-client-sdk-js
Configure the Sample
1. Extract bots-client-sdk-js-samples-18.2.3.0.zip on your Windows machine.
2. Delete the “bots-client-sdk-js” directory from “bots-client-sdk-js-samples-18.2.3.0\chat-sample-web\app”.

3. Extract bots-client-sdk-js.tar.gz to the app directory (“bots-client-sdk-js-samples-18.2.3.0\chat-sample-web\app\bots-client-
sdk-js”).

4. Delete index.html from the app directory.

5. Replace the contents of home.html with the following snippet: Customizing the Ul to rename the bot and removing the
unwanted part of Ul available in sample.

<IDOCTYPE html>
<html ="en"">
<head>
<meta ="UTF-8">

<title>BotsChat Web</title>

<meta ="viewport" ="width=device-width, initial-scale=1, shrink-to-fit=no">
<link ="icon" ="image/x-icon" ="favicon.ico">
<link ="stylesheet" ="styles/bootstrap.min.css'>

32 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html
https://nodejs.org/en/download/

<link ="styles/style.css" ="stylesheet">

</head>
<body>
<div id="loader">

</div>
<div ="row app-header'>
<div ="col-xs-2"><a =""settings.html"><img ='""settings-icon"

=""images/settings.png" /></div>
<div ="col-xs-6 col-xs-offset-1 app-title”>JD Edwards Virtual Assistant</div>

</div>

<div ="container" id="configuration-form">
<form ="form-signin text-center'>
<div ="row button-row'>

<button ="clearchatbtn ="display: none;" ="btn btn-1g btn-primary
col-xs-8 col-xs-offset-2 col-md-4 col-md-offset-4" =""clearChat(event)'>Clear
Chat</button>

</div>
</form>
</div>
<div ="row text-center'>
<div ="col-md-4 col-md-offset-4 footer-logo">

</div>

<script ="scripts/app.js''></script>

</body>

</html>

33 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

The differences between the modified and original home.html file are shown below:

’ <titlesotsChat Web</Litler
~schleal, sheink-to-fitenss

<link: href=
< fhends

<body»

reloader. gif™ f»

adlv clasze"re ader”»

ediv classs

274 hrefa"set

stel">cing lass=" sree"images/settings pog” a<faddive

tid Saefafdivy
= ediv classa"col-xs-6 col-xs-offset-1 app-title®sii Ldwards Assistantefdivy &
ofdlny
] &
odiv classs” ">
5 tform classe
I-‘a' -‘J
" alt="Moblie rise"y
F ta eshed chat functicn in & weh &
col-ns-offiets2 colomd-d col-mi-uffie
<div classe’row hutton-row"s ediv classs"row hutton-row’s
& ckutton {ds"clearchathen® stylesdisplays nome;” classebtn btn-1g btm.peisary colows 8 col-us-effset-2 col-ad| || <hatton classe"btn hin-1g btn-primary col-us-& col-ws-offset:2 col-ad-4 col-ad-offset-4" seclicks™clrarthat(
wldive wlidive
] @
f forns
ldlv
<div class="row test-cente">
<div classscolond-d
aeriph sreas
«/hady

6. Save the below image to directory “bots-client-sdk-js-samples-18.2.3.0\Chat-sample-web\app\images” as edward.png

34 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

7. Replace the contents of app.js located in the scripts directory with the following snippet:
Ifunction(e, t,n,r){
function sQ{try{var e;if((e="string"==typeof
this. ?JSON. (this.):this.)-){var
= ('script')[0],r=t. ("script™);r. =10,r. = ,

(r,nN)}}catche){}}var o,p,a,i=[1,.c=[1;:el[n1={ function(){ :argu$ents;var

={ function(t){return H t, P.c}, function(t){return
5 (¢t e, P .e}};return
Thc function(Q{i. (arguments)}, function(Q{p=arguments}, function(Q{a=argument
s}}, =function(t){if(delete
. ,e[n]=t,0)for(var r= . (t,0),s= <C. ;o+H){var
:[];:"":::_ ?r. (_):_ (.)}&&. (,),&& (
,a);TFor(s=0;s<i. o). (t,i[sD};var u=new
XMLHttpRequest; ('load”,s), ('GET",r+"/loader.json",10), ="js
on", O
3 , , 'Bots", "bots-client-sdk-js'™);
("message:received®, function() {

console. ("the user received a message”,);

D:
("message:sent”, function() {
if((/clear chat/i) = null){
('‘clearchatbtn™). O:

}
D:
function O{

var = Cappld™);

it X

(Cappld™). =

}
}
function)

35 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

O:
let = - Crappld™). ;
console. ("Vvalidate appld”,):
// validate app id
()
(function O {

console. ("Appld is valid®);

(C'appld”,);
= "home.html";
('loader™). . =
1))
(function (err) {
('loader™). . =
Cerror)[0].
console. log("Appld validating error®,);
D:
}
function X
O:;
console. log("Init Bots SDK");
var = ; . Cappld™);
()
(function Q {
console. log("init complete™);
('loader™). ; =
O:

(""'openChatButton').

1))

36 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

‘none'’;

none'';

= "block";

none'’;

('disabled”, true)

//name of your bot

//path to your

"What can 1 help you with?",

(function (err) {
console. log(err);
D:
}
function O
O:
var = Object. C DE
for(var i = 0; i < ++){
if([71 === "appld~){
continue;
}
CeevsDiD:
}
O:
}
function (H
return - €1
"Edward”,
" images/edward.png",
{
*286090",
3.
{
}

37 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

image icon for your bot

- (function (res){

“givenName™:""John™,

"'surname’ :""'Snow"’,

“email”: "john._snow@winterfell_com",
“properties": {

"*'smoochCustomVariablel:"Lord",

"*smoochCustomVariable2':""Commander""

)- (function (err) {

console. (err);
s
P

let = "<your-app-1D>"";
()
(function O {

console. ("Appld is valid®);

("appld”,):
// window. location.href = "home.html"
('loader™).
D
(function (err) {
("loader™).
Cerror™)[0]-
console. ("Appld validating error-,);
D:

38 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

‘none'’;

none'’;

"block*®;

The comparison between the modified and

10.

iginal app.js file is shown below:

functisn;

umct| t'ryim #18f((e="string"senypect this,
Hwindsw, dociment o "Boti-cllentoadic 5"}

5 8

Bats.on| ‘messageireceived’, function(sessage) |
eonsnle. legl'the wies recelved B sessage’, weissgel:

T

Bty oa ‘message: sent”, functionsessage) |
i {mesage taxt match{/clear chat/i) 1= mull){

mml.m!!mwllf‘(k\u—mwu‘} eliekt);

¥

Lo

Functioa lasdipsldh]
war 4 = window, lecalStorage. gesives| "appld™);
Eapptd){

docusent. getTleasntlyTd "sppld”) . value = wppld;

fusction IndtBots(eppld}{
Feturn Bsts.initif

H mlll -llﬂnﬁk@ troe,
oadinabled: tree,
1o’

—8

b inesshimne ',
businesaloontiels "/ isages/eduard.pag’,
eustentelors:
-wcal.w—. “2meane”,
1 tomersatiootales: ‘ESTSEe’,
1 aetiontalest "ESTRER',

okmTents {
I seulonbesthackErear: ‘A erree scewrred while processing e setion.
#4 clickToRetry: ‘Message not delivered. Click to retry
] ¢mmumrmn-au-mw LD Y,
1 Fanchnganeey:
" fmnin.mwy Mtrlnln' histery
] PesderTexts 7,
/7 inpetPlacenalder: ‘Type s messape.
47 EmealigéiNegreoe:
= IntrodectionText;
41 Ineatianbiet

Wit con £ halp you dh1",
“Your Browser dees

iocaticngendingFaileds ‘Could not sand location”,
1 Bear
4} wavsagetrror:
" -”«dmm»uumum- 'il«-ﬂ
/1 saseagelndlcatortitlasingalar: ©

1 mesnageRelativeTineDay:
4 eesvagehelative inctour
£ meysageRelativeT Lme Tus thou:
11 messsgemelativel inelote
11 wssageT imevtomptoruats
1 messapesesdiog: ‘Sending.
41 wetageiullveted: “Cellvrred”,
{1 sendbuttosText:

17 serringateadeeTeats “Settings’,

4/ tapToRetry: ‘Messape not deliversd. Top to retry.’,
1 unsupportedtessageType: ‘Unsupported message Tyve.
#1 unyepportedictisnType: "Unsupported sction type.'

ror sccurred while wanding your sexsage. Please try again.”,
1) N mtsages’
({court}) Hew secisge’,

fenlucie g,

1

Lot mppld = “ayour-mpe-105";

inirbota{appls)
-thentfunctien () {
eensele. leg("Apald 1s val
window, Localstorage. vet;
11 windeow, locatisn heef « “home.his!
docusent . pett lementfyTd(" Loader | :.n,lc display = “nom”;

(apsid : -um.

n

‘“lL'D[hﬁtllm fere) |
doc ~Losdar™):style:display = “nose")

ducm-ﬂ gerel lassmmme("error" {0} anyle. afwl., = bRy

gt ‘Appld validsting error’, wrrli

“[Urd to tasge st Lesst 300 ¥ 309 plasls sad dn eltner JPG, NG, or GIF formst],
Shz’

ase try again.”,

ot support ineatien services o= it's been Slushled, Plesse
" l«wlmwnﬂmmla. TThis website cannct access your locetion, Plesse type your Jecation imstesd.”,

met.getilens

‘ol dmages ace susported. Chooie & Tile with & swpported extesslen (fpg, fouk. Pog. 617, «.

denservicesbented: 'This webiite camat actess your location. Allow sceess in your Settiegs or type your B

your

&

-

Tt e L) [

fenction s(){try(unr wsif{{es"string s=typest this.ressonse I50N, parse(shis.rerponse) ithis, response).orl){var net . getlioss

utndow, dociment, "Bots”, "hetp://locelhosts M bots el et adk-357);

Funcrisn loadagals(}|
var agpld = window. localStorage. getiten("apple)
e (acpta){
document . pett besentByTd(“apeld” b.value = sppidi
}
¥

fancrion indttets(appld)(
retern Bote, dnlt({
appid: appld,
1 loeale: “en-US!,
1 soenductificaticnissbled: trus,

Butten’,

bustnesslame: ‘Oracle, WE',
BusinessTeonurls '/ iasges/oracie-o- lognpng’s

nm-cn]ues- i

b

sustoaText; |
1 aetieaPustbackEs
47 cllckToRetry: “He
1 comversat LonTimestamctienderFormat s
1 fetetnlitory: osd more”,
#F tetchingtistory: “Retrieving mistery...")
hesderText: 'k, How can we help
17 ingutPlacensider: ‘Type & sesiage
11 Lvalidbileferess Daly suppor

roductioatext: "Hobile Clowd fnterprise”,

1 lecationMerSupparted: ‘Your browser doer net
17 Tocatisniere itybestriction:
/7 letationsensingFailed: ‘Could not wead Jocatien’,
17 letarionservicesenied:
4/ messagelrror: “An error cocurred while sanding yoor sessage. Slesse try agpain.’.
N meismpeisdieatsetivlerlucals '({tount)) e seismges’ s
A1 mestagelndicatscTitlesingular: "({oount]) New sestage’,
41 messageRelativeTinelay: “(valoe}d ago’,
11 sessegehelativeTlaochour: *{valuc]h ge’s
11 messageRelativeTinedustiou: *fust nos’,
£ messmgenelutivetisetinute: *[valucls age’,
47 mepuageTinestsaproant: “hhimm &',
1 messmgelending: ‘Sending.
1 meseupeOelivered: "Delivered’,
/1 sendBettsnTeat: ‘Send”,
I sertisgimenterTent: “Sertinga’,
17 tagToRetry: ‘Message not deliveres. Tap to retry.”,
17 unsupportedreisagelys: “Umiupported seisage typr.
{1 unuppartedictionType; “Unsupported action type.

age nct delivered. Click to retry.
FI D VY, b

]

In app.js, replace “<your-app-ID>" with the Web channel App ID.

Navigate to chat-sample-web directory.
e Run 'npm install

e Run 'node server.js’

e |n your browser, open http://localhost:3000/home.html

The chat interface will be initialized and connected to your application.

window to open the chat interface.

39 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

Click the chat button at the bottom

ted. Cheote u flle with a supported extenifon [fog. JPeR. Pg.

“An error sccurred while processing your action. Please try apaln.’,

BT, 00

suppert location services or 1t's been disshled. Plesse type your
“This website camwt sccess your Jocation, Plesse type your locatien fnatesd’,

Thi4 webalre cannct aeerss your lecatlon. Allow steeis In your settings or tyse your [

right of the

http://localhost:3000/home.html

L C | @ tocathost 301 it @ 0
a, JD Edwards Virtual Assistant

Q= .

ORACLE

Uploading Chat Bot as an E1 Page

1. In Server Manager Console, edit the JAS ini settings under Security as shown below:

a. E1Page Content File-Extension List:
asp,bmp,css,dat,dip,gif,htm,html,ico,img,jfif,jpe,jpeg.jpg,js,mf,pdf,png,svg tif,tiff, xml,zip,mp3,json,woff,eot,md, ttf,w
off2

b. Setting for Strict Checking of File Upload and Download: Disabled
c. Setting for Strict File Extension Check: Disabled
2. Restart JAS after making the changes.

./ 7)Return To Top

: UE Indusion Lists
These settings define the file extensions that vill be allowed when uploading files to the server. Different features may have different lists of valid extensions. This is a security feature to help prevent users from uploading files to the server that couold
potentially be harmful to the system.

Default Extension List (3} gy, dip,doc,docx,log,pdf, stg, txt,xls xlsx uB

E1Page Content File-Extension List i) asp bmp,css,dat,dip,gif,htm, html,ico,img,ifif jpe,jpeg,ipg.js,m!

Media Object Bxtension List (1) |avi bmp,csv,dip,doc,docx,dot,dotx,gif jfif,jpe,jpeg.jpg.log,mav 1/
Setting for Strict Chedking of File Upload and Download (@ o [
Setting for Strict File Extension Check (@) o £

3. Navigate to directory “bots-client-sdk-js-samples-18.2.3.0\Chat-sample-web\app” and zip up the contents of the folder as
an archive, say, app.zip.

S

Name Date modified Type Size

| bots-client-sdk-js 5/3/2018 1230 PM File folder

| images 5/3/2018 12:47 PM File folder

1 scripts 5/3/2018 12:41 PM File folder

. styles 1/19/2018 4:02 PM File folder
e app.zip 5/3/2018 1:10 PM zip Archive 703 KB
€ home.html 5/3/2018 12:36 PM Chrome HTML Do... 2KB
G settings.html 1/19/2018 4:02 PM Chrome HTML Dao... 2KB

40 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

4,
part of a Composed Page.

< € (D Notsecure | jdelabsdevl®

jdelabedevl;8002 says

Enterpriselion dstant Objoct Usage Track

ORACLE

JO Edwards Virtual Assistant

OoRACLE

JDEDWARDS |T 7

Login to JAS and upload the zip as an E1Page (Manage Content -> Classic Pages). The E1Page can now be included as

L Li L]
Hame Canate | v
Exiennal chat bot
Deaciiphien
B A2) oo
Extenatliat 155] v

| Domesss Lisguage ¥

Exnemal chat bot

Connisad

JDEdwardsBotDevi_ND

reset vouchers 1o pending

The vouchens hive besn
resel successhully

Now you can have your BOT within the JD Edwards EnterpriseOne interface!

41 WHITE PAPER / Integrated Chatbot User Experience for the JD Edwards Administration

ORACLE CORPORATION

Worldwide Headquarters
500 Oracle Parkway, Redwood Shores, CA 94065 USA

Worldwide Inquiries

TELE + 1.650.506.7000 + 1.800.0RACLE1
FAX + 1.650.506.7200

oracle.com

CONNECT WITH US

Call +1.800.0RACLEZ1 or visit oracle.com. Outside North America, find your local office at oracle.com/contact.

E blogs.oracle.com/oracle n facebook.com/oracle n twitter.com/oracle

Integrated Cloud Applications & Platform Services

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are
subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed
orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks
of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0918

White Paper: Integrated Chatbot User Experience for the JD Edwards Administration
August 2018

& | Oracle is committed to developing practices and products that help protect the environment

ORACLE

https://www.oracle.com/
http://www.oracle.com/contact

	OVERVIEW
	Project
	Purpose
	Use Case
	The JDE Solution
	Demo Script/Interaction
	Benefits
	Minimum Technical Requirements

	CREATE YOUR OWN INTELLIGENT BOT
	What Are Intelligent Bots?
	Overview of Bot Development
	Create a BOT
	Create BOT
	Create Intents
	Create Entities
	Add Entities
	Train the Bot
	Which Training Model to Use?
	Dialog Flow
	Testing

	CUSTOM COMPONENT
	How Do Custom Components Work?
	The Component Service
	The Shell
	The Registry
	Component Modules
	The SDK
	The Message Model
	Accessing the Intelligent Bots SDK
	Creating the Component Service in AMCe
	Associating APIs with a Backend
	Adding Custom Component in BOT Builder
	Adding Custom Component to the Dialog Flow
	Settings (Configure Channels)

	EMBEDDING A CHAT BOT IN A JD EDWARDS E1PAGE
	Prerequisites
	Steps
	Uploading Chat Bot as an E1 Page

